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Part III: Concurrency

2

I recommend you read Peter OʼHearnʼs paper on concurrent separation 
logic:
  Resources, Concurrency and Local Reasoning
  http://www.eecs.qmul.ac.uk/~ohearn/papers/concurrency.pdf

OʼHearn has some tutorial slides that accompany the paper
  http://www.eecs.qmul.ac.uk/~ohearn/papers/etapstalk.pdf 

Francesco Zappa-Nardelli has some very nice slides on concurrency 
verification:
  http://moscova.inria.fr/~zappa/teaching/mpri/2009/
Many of the slides in this section of the notes have been adapted from 
this course.
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Concurrency

Concurrent:
“Running together in space, as parallel 
lines; going on side by side, as 
proceedings; occurring together, as events 
or circumstances; existing or arising 
together; conjoint”
                                          - Oxford English Dictionary

Motivation

• Concurrency is hard:

“If you can get away with it, avoid using 
threads. Threads can be difficult to use, and 
they make programs harder to debug.”

Java Sun Tutorial “Threads and Swing”

• Multi-core means concurrency everywhere!



Testing is hard

“Testing concurrent software is hard. Even simple 
tests require invoking methods from multiple 
threads and worrying about issues such as 
timeouts and deadlock. Unlike in sequential 
programs, many failures are rare, probabilistic 
events and numerous factors can mask potential 
errors.”

                                                 JavaOne Technical session

Verification to the rescue?

Types of concurrency

• Disjoint concurrency

• Coarse-grain concurrency

• Fine-grained concurrency

• Non-blocking concurrency



Blocking stack 
(Coarse Grain)

pop() {
   Node t,n; int v;
   lock(TOP)
   t = TOP;
   if (t == null)
     return -1;
   n = t.tl;
   TOP = n;
   unlock(TOP)
   v = t.value;
   delete(t); 
   return v;
}

push (v) {
   Node t,n;
   b = new Node(v);
   lock(TOP)
   t = TOP;
   b.tl = t;
   TOP = b;
   unlock(TOP);
}
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Implementing Locks

CAS(l, t, n) 
means  
if ( *l == t) {

*l = n; return true
}

lock (TOP) {
   while(!CAS(&TOP.lock, 0, 1)) 
   {  }
}

unlock (TOP) {
   TOP.lock = 0;
}

Compare and Swap:



Problems with locks

• Pre-emption

• Bad in high contention

• Priority inversion

Try without locks.

Nonblocking stack
pop() {
   Node t,n; int v;
   while(true) {
     t = TOP;
     if (t == null) return -1;
     n = t.tl;
     if (CAS(&TOP,t,n)) {
          v = t.value;
          delete(t); return v;
     }
   }
}

push (v) {
   Node t,n;
   b = new Node(v);
   while(true) {
     t = TOP;
     b.tl = t;
     if (CAS(&TOP, t, b))
          break;
   }
}
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WHOOPS!

The “non-obvious” bug Non-blocking difficult

Several fixes to this algorithm

• Timestamps

• Garbage collector

• DCAS

• Hazard pointers



Disjoint Concurrency
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Programming language

C ::= … | C || C | …
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Now we extend the language with parallel composition.  That is the 
ability for two threads/processes to be interleaved.

C1 || C2 ,s,h →  C1ʼ || C2ʼ,sʼ,hʻ   
if either C1,s,h → C1ʼ,sʼ,hʼ and C2=C2ʼ
   or  C2,s,h → C2ʼ,sʼ,hʼ and C1=C1ʼ



Parallel Rule

{ P1 } C1 { Q1 }
{ P2 } C2 { Q2 }                       .
{ P1 * P2 } C1 || C2 { Q1 * Q2 }

Provided variables used in C1 not modified by C2

and variables used in C2 not modified by C1

The variable side condition prevents races on the stack variables.   

The * prevents races on the heap.  

Example

{ x  _ * y  _ }
{  x  _   }         {  y !_   }   

[x] := 3      ||      [y] := 4
{  x  3   }         {  y !4   }   

{ x  3 * y  4 }

The variable side condition is trivially satisfied as neither side modifies 
any variables.  

The * is used to ensure that neither thread modifies the same heap. 



Parallel Dispose tree

{ tree(x) }disposetree(x) { emp } ⊦
  { tree(x) }
    if x != 0 then 
      i := [x+1];
      j := [x];
      disposetree(i) || disposetree(j) ||  dispose x
  { empty }
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Example

  { tree(x) ∧ x != 0}
    { ∃i,j.  tree(i) * tree(j) * x  i,j } 
    i := [x+1];
    { ∃j.  tree(i) * tree(j) * x  i,j } 
    j := [x];
    { tree(i) * tree(j) * x  i,j } 
    disposetree(i) || disposetree(j) ||  dispose x
  { empty }

Exercise: Prove that the rule
{ ∃x. P * E  x }  x := [E]  { P * E  x }
      provided E does not mention x.
is sound.



Example

{ tree(i) * tree(j) * x  i,j }
{ tree(i)  }        { tree(j) }         { x  i,j } 

disposetree(i) || disposetree(j) ||  dispose x    .  
{ empty }         { empty }         { empty } 

  {  empty * empty * empty  }
{ empty }

Can we verify these?

{ empty }
x := cons(3); 
z := cons(3);

[x]:=4 || [z]:=5; 
{x⟼4 * z⟼5}

{ empty }
x := cons(3);

[x]:=4 || [x]:=5; 
{x⟼_}

{ empty } 
x:=4 || x:=5;

{ empty } 

{ y = x+1 } 
x:=4 || y:=y+1;

{ y = x+2 }



Merge sort

mergesort(x, n) 
  if n >1 then
    local m in 
    m := n/2;
    mergesort(x,m) || mergesort(x+m,n-m);
    merge(x,m,n-m)

Merge sort takes a pointer to an array an a length.
If the array has 1 or 0 elements then it is trivial to sort it. Otherwise, we 
must recurse.  We divide the size of the array into two, and sort the two 
parts in parallel.  Finally, we must merge the arrays.

Merge sort

{ array(x,n) }
  mergesort(x, n) 
{ sorted_array(x,n) }

{ sorted_array(x,m) * sorted_array(x+m,n) }
  merge(x,m,n)
{ sorted_array(x,m+n) }

We can define array as 
   array(x,n) ⇔ ⊛0≤i<n. x+i  _ 

where 
   ⊛0≤i<0.P(i) ⇔ empty
and
   ⊛0≤i<n+1.P(i) ⇔   (⊛0≤i<n.P(i)) * P(n)
That is,
   ⊛0≤i<n.P(i)  ⇔  P(0) * … * P(n-1)
We define a 
  data_array(x,n,f) ⇔ ⊛0≤i<n. x+i  f(i) 
Here f is used as a function to represent the data contained in the array. 
We can then define a sorted array as 
  sorted_array(x,n) ⇔ ∃f. data_array(x,n,f) ∧ sorted(f)
  sorted(f) ⇔ ∀i. f(i) ≤ f(i+1) 



Exercise

Given the previous specifications verify the body of 
mergesort.  

The specification does not deal with the resulting array 
being a permutation, how could you extend the 
specification?

Concurrent 
Separation Logic
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Multiple access

How do we verify a program where several threads 
want access to the same memory? e.g.

[x] := 43   ||   [x] := 47 

Programming language

C ::= … | resource r in C |  with r when B in C | …
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We add two connectives to deal with communication
  resource r in C
Allocates a lock, r, that can be used inside the command C.
The second
   with r when B in C
acquires the lock for the execution of C provided the condition B holds 
on entry, otherwise it blocks until that condition holds before acquiring 
the lock.  This is also called a critical region. 



Resource Rule

Δ, r : I ⊦ { P } C { Q }                      .
Δ ⊦ { P * I } resource r in C { Q * I }

We use a context to specify the resource invariant associate to each 
lock.
   Δ ::= r : P | Δ, Δ 
We can treat this as a map from resource/lock name r, to its invariant P.
This rule can be read as removing some local state and making it 
shared by the lock r. 

Lock Rule

Δ ⊦ { (P * I) ∧ B} C { Q * I }                      .
Δ, r : I ⊦ { P } with r when B in C { Q }

In this rule, we acquire the lock r, and get the resourceʼs invariant, I, 
added to our pre-condition.  On exit from the lock, we must re-establish 
the resourceʼs invariant, hence the “* I” in the post-condition. 
This is similar to the while rule, where we must reestablish the loop 
invariant after executing the body.  Here it is a little different, 
reestablishing the resource invariant it required, so the next thread to 
acquire the lock will correctly be able to assume the resource invariant 
holds. 
Question:  How do we know the resource invariant will not be modified 
when the lock isnʼt acquired?



Caveat: side-conditions

There are subtle variable side-conditions used to allow 
locks to refer to global variables.

Each variable is either associate to 

• a single thread; or 
• a single lock.

It can then only be modified and used in assertions by 
the thread, or while the thread holds the associate 
lock. 

Alternatively, we could encode all variable access into the heap, but 
this leads to complications in the presentation. 

Another alternative is presented in 
   Variables as resource for Hoare Logic
   Parkinson, Bornat, and Calcagno, LICS 2006
where a logic of variables is developed in a similar way to separation 
logic deals with the heap. 

Binary Semaphore

We can encode a semaphore as a critical region

    P(s)  =  with rs when s=1 do s := 0 
    V(s)  =  with rs when s=0 do s := 1

Resource invariant

(s=0 ∧ empty)   ∨  (s=1 ∧ Q)

Initially,

s=0

The variable s is associate with the critical region/lock rs.

Q is the state protected by the semaphore. 

We can specify
  { emp } P(s) { Q }
and 
  { Q } V(s) { emp } 

Exercise: Prove the body meets these specifications. 



Example

{ emp }
P(s)
[x] := 43
V(s)
{ emp }

{ emp }
P(s)
[x] := 47
V(s)
{ emp }

Let Q be x  _ in the resource invariant of the semaphore.

Example

{ emp }
P(s)
{ x  _ }
[x] := 43
{ x  _ }
V(s)
{ emp }

.     { emp * (Is ∧ s=1)} s := 0 { x  _ * Is }   .
{emp} with rs when s=1 do s:=0 { x  _ }

.      { x  _ * (Is ∧ s=0)} s := 0 { emp * Is }  .
{x  _} with rs when s=0 do s:=1 { emp }



One place buffer

with buff when full do 
    full := false
     y := c
dispose y

x := new
with buff when ¬full do 
    full := true;
    c := x;
     

full := false

The variable full is associated with the lock, buff.

One place buffer

with buff when full do 
    full := false
    y := c
dispose y

x := new
with buff when ¬full do 
    full := true;
    c := x;
     

full := false
{ (full ∧ c  _)  ∨  (¬full ∧ empty) }

Resource 
Invariant



One place buffer

with buff when full do
    { full ∧ c  _ } 
    full := false
     y := c
    { (¬full∧ empty) 
       * y  _ } 
{ y  _ }
dispose y

x := new
{ x  _  }
with buff when ¬full do
    { (¬full∧ empty) 
       * x  _ } 
    full := true;
    c := x;  
    { full ∧ c  _ }

{ (full ∧ c  _)  ∨  (¬full ∧ empty) }

Upon entry to the critical region, we get the resource invariant added to 
our current precondition.  When we leave the region we must 
reestablish the resource invariant.

Ownership is in the eye of 
the assertor

with buff when full do 
    full := false
    y := c

x := new
with buff when ¬full do 
    full := true;
    c := x;
dispose y

full := false

Can we verify the following?



Caveat: precise invariants

The resource invariant associate with a particular lock 
must be precise.

A formula, P, is precise, iff,  for any heap, there is at 
most one subheap satisfying the formula
   ∀h1,h2,h.   h1 ≤ h ∧ h2 ≤ h ∧ h1 ⊧ P ∧ h2 ⊧ P ⇒ h1 = h2

We can define an order on heaps as
  h1 ≤ h ⇔ ∃hʼ.  h1 * h = hʼ 

Rule of conjunction

{ P1 } C { Q1 }
{ P2 } C { Q2 }                      

{ P1 ∧ P2 } C { Q1 ∧ Q2 }  



Subtle soundness

Without rule of conjunction logic is sounds with 
arbitrary resource invariants.

With precise invariants and the rule of conjunction the 
logic is sound.

Reynolds’ counter 
example

We can prover the following holds with the resource 
invariant: r: true.

{true} skip {true}                                    .
{(emp ∨ x  _) * true } skip { emp * true }         .
{ emp ∨ x  _ } with r when true do skip { emp } 



Reynolds counter 
example

From the previous proof we can derive both

{ emp * x  _ } with… { x  _ } 

{ emp * x  _ } with… { emp }

which with the rule of conjunction leads to a 
contradiction.

What about racy 
programs?

Do we want to forbid all races?

Does concurrent separation logic forbid all races?



Owicki/Gries method
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For this lecture we will ignore the heap.

We will focus on how to remove the draconian restriction on variables 
from the previous section.  As we had the heap these restrictions didnʼt 
seem so bad.  But without the heap they are very restrictive.

This lecture is based very heavily on Francesco Zappa-Nardelliʼs 
presentation. 

Example

If we assume assignment is atomic, then is the following 
true:

{ x = 0 }
x := x +1  ||  x := x + 2
{ x = 3 }



Parallel rule (attempt)

{ P1 } C1 { Q1 }
{ P2 } C2 { Q2 }                                  

{ P1 ∧ P2 } C1 || C2 { Q1 ∧ Q2 }

This rule is unsound.  Consider

{ y=1 } x := 0 { y=1 }
{ true } y := 2 { true }

both hold in Hoare logic, but 
  { y=1 ∧ true } x :=0 || y := 2 { y=1 ∧ true }
certainly does not hold. 
 

Parallel rule (attempt 2)

{ P1 } C1 { Q1 }
{ P2 } C2 { Q2 }                                  

{ P1 ∧ P2 } C1 || C2 { Q1 ∧ Q2 }

Provided  FV(P1,Q1) not modified by C1

and  FV(P2,Q2) not modified by C2

This rule is unsound.  Consider

{ y=1 } x := y ; z := x { z=1 }
{ true } x := 2 { true }

both hold in Hoare logic, but 
  { y=1 ∧ true } (x := y ; y := x) || x := 2 { z=1 ∧ true }
certainly does not hold. 

The issue is that the intermediate assertion in the proof
{ y=1 } 
  x := y ; 
{ x=1 }    ← This is affected by the other thread.   
  z := x 
{ z=1 }

 The assignment interferes with the assertion. 



Interference

Do the following commands affect the assertions

x:=x+1 y:=y+1 x:=x+2 x:=y

x>100

y=4

even(x)

x<30

x=y

even(x)∧even(y)

Interference

C does not interfere with P:

• mod( C ) is disjoint from FV( P ) ←too restrictive
• { P } C { P }

The second says the command does not affect the 
validity of the assertion

Exercise: prove the questions on the previous slide with both 
definitions.  



Interference freedom

We define the critical formula of a proof outline Δ 
proving {P}C{Q}, as Q and every pre-condition of a 
command.

Given two proof trees Δ1 Δ2, they are interference free 
if for every critical formula in one, R, and every triple in 
the other {P}C{Q}, then the triple preserves the 
formula,  {P ∧ R} C { R }. 

Example

                  { x = 0 }
{ x = 0 ∨ x=2 }     { x = 0 ∨ x = 1} 
      x := x +1     ||      x := x + 2
{ x = 1 ∨ x = 3}    { x = 2 ∨ x = 3}
                  { x = 3 }



Interference freedom 
requires

{(x=0 ∨ x=2)∧(x=0 ∨ x=1)} x := x +1 { x=0 ∨ x=1} 

{(x=0 ∨ x=2)∧(x=2 ∨ x=3)} x := x +1 { x=2 ∨ x=3} 

{(x=0 ∨ x=1)∧(x=0 ∨ x=2)} x := x +2 { x=0 ∨ x=2}

{(x=0 ∨ x=1)∧(x=1 ∨ x=3)} x := x +2 { x=1 ∨ x=3} 

                  { x = 0 }
{ x = 0 ∨ x=2 }     { x = 0 ∨ x = 1} 
      x := x +1     ||      x := x + 2
{ x = 1 ∨ x = 3}    { x = 2 ∨ x = 3}
                  { x = 3 }

Example: Bank

{ dep > 0 }
if credit > 1000 then flag := 1 else flag :=0
  ||
credit := credit + dep
{ flag = 1 ⇒ credit > 1000 } 



Example: Bank
if credit > 1000 then 
  {credit > 1000}
  {1=1 ⇒ credit>1000}    
  flag := 1 
  {flag=1 ⇒ credit>1000}
else 
  {credit<1000}
  {1=0 ⇒ credit>1000}
  flag :=0
  {flag=1 ⇒ credit>1000}
{flag=1 ⇒ credit>1000}

{ dep > 0 }
credit := credit + dep
{ dep > 0 }

We have four unique critical assertions, and three commands that update the state. 

Exercise:  Prove each of the critical assertions is preserved by the commands. 

Example: Bank

What goes wrong if we strengthen the specification? 

{ dep > 0 }
if credit > 1000 then flag := 1 else flag :=0
  ||
credit := credit + dep
{ flag = 1 ⇔ credit > 1000 } 

Exercise: Attempt this proof, and illustrate which of the conditions does 
not hold. 



Completeness

Can you prove the following:

{ x=0 }
  x:=x+1 || x := x+1
{ x=2 }

?

Attempt

x:=x+1 x:=x+1||
{ x=0 ∨ x=1 ∨ x=2 ∨ …} { x=0 ∨ x=1 ∨ x=2 ∨ …}



Auxiliary Variables

Sometimes we need to instrument program to account 
for interference more precisely

{ x=0 ∧ b1=0 ∧ b2 = 0}
  <x:=x+1; b1:=1> || <x := x+1; b2:=1>
{ x=2 }

Angle brackets mean the program executes all the operation in one indivisible unit of time.  That is, 
intermediate states are not observable.  It is atomic.

Attempt II

<x:=x+1; b1:=1> <x:=x+1; b2:=1>||
{ x=b2 ∧ b1=0   } { x=b1 ∧ b2=0  }

{ x=b2+1 ∧ b1=1}   { x=b1+1 ∧ b2=1}   
{ x=b2+1=b1+1 ∧ b1=1 ∧ b2 =1 }   

{ x=2 }   

{ x=b1=b2=0 }   



Auxiliary Variables

A set of variables, A, is consider auxiliary, if

• the only expressions they appear in, are on the 
right of an assignment where the target of the 
assignment is in the set of auxiliary.

We define erase(C,A) as replacing all assignment to an 
auxiliary by skip. 

That is they cannot appear in the guards of loops or if-then-else 
commands, and their value cannot be assigned to a normal variables.

Alternatively, it can be seen as erase(C,A) no longer mentions A.

Auxiliary variable 
elimination

{ P } C { Q }.

{ P } C’ { Q }

where C’ = erase(C,A)

and A not in FV(P,Q)

This rule allows us to introduce auxiliary variables in the justification of 
a program.  As we did for the double increment program. 



Conclusions

If we have n commands in a thread, and m critical 
assertions, and t threads how many interference checks 
would we have to perform?

Is there a more scalable/compositional way?

Rely-guarantee method
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A good introduction to rely-guarantee can be found in Vafeiadisʼs award 
winning dissertation:

   Modular fine-grained concurrency verification
   http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-726.html



Interference

In Owicki/Gries method each pre-condition needed 
checking against each command in another thread.

Can we abstract the interference?

Rely-guarantee

Judgements are extended with a concurrent context

R, G ⊦ { P } C { Q } 

• the rely, R, is an abstraction of what the other 
threads can do; and 

• the guarantee, R, is an abstraction of what this 
thread does.

Both the rely and guarantee are relations.



Example

We specify relations by describing the current and the 
previous state: for example, 

old(x=0) ∧ x=1

∀X. old(x=X) ∧ x=X+1

(old(x=0)∧x=1)  ∨ (old(x=2) ∧ x=3) 

Stability

We define an assertion as stable with respect to a 
relation as

P stable under R   
     ⇔    σ ⊧ P ∧ (σ,σ’) ⊧ R   ⇒   σ’ ⊧ P



Stability

Do the following relations preserve the assertions

x=old(x)+1 x=old(x)+2
id(x) ∧ 

y=old(y)+1
id(x) ∧ 

y=old(y)+2

x>100

y=4

even(x)

x<30

x=y

even(x)∧even(y)

Parallel Rule

G1 ⊆ R2 
G2 ⊆ R1 
R1, G1 ⊦ { P1 } C1 { Q1 }
R2, G2 ⊦ { P2 } C2 { Q2 }                                     .
R1 ⋂ R2, G1 ⋃ G2 ⊦ { P1 ∧ P2 } C1 || C2 {Q1 ∧ Q2 }



Parallel Rule

G1 ⇒ R2 
G2 ⇒ R1 
R1, G1 ⊦ { P1 } C1 { Q1 }
R2, G2 ⊦ { P2 } C2 { Q2 }                                     .
R1 ∧ R2, G1 ∨ G2 ⊦ { P1 ∧ P2 } C1 || C2 {Q1 ∧ Q2 }

If we consider a logic over relations, we can view it with the logical connectives.

Assignment

P stable under R
Q stable under R
P ∧ x=old(E) ⇒ G
P⇒Q [x:=E]                 .
R, G ⊦ { P } x := E { Q }



Skip

P stable under R     .
R, G ⊦ { P } skip { P }

Surprisingly, we have to modify this rule slightly to maintain soundness 
of the system.

Example

Let us return to our simple example:

x := x + 1   ||  x := x + 2

We can verify this using the following relations

R1=  (old(x)=0 ∧ x=2)  ∨  (old(x)=1 ∧ x=3) = G2

R2=  (old(x)=0 ∧ x=1)  ∨  (old(x)=2 ∧ x=3) = G1



First Thread

To show 

R1,G1 ⊦ { x=0 ∨ x=2 } x := x + 1 { x=1 ∨ x=3 }

We need to prove

• x=0 ∨ x=2  stable under R1; and 

• x=1 ∨ x=3  stable under R1; and

• old(x=0 ∨ x=2) ∧ x=old(x+1) ⇒ G1; and

• (x=0 ∨ x=2) [x:=x+1] ⇒ (x=1 ∨ x=3)

Exercise: Prove the second thread meets the specification.

Comparison

How does this compare to Owicki/Gries?



Current/Future 
Research
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