
Software Verification
Matthew Parkinson

Lent 2010 (16 Lectures)

1

Part III: Concurrency

2

I recommend you read Peter OʼHearnʼs paper on concurrent separation
logic:
 Resources, Concurrency and Local Reasoning
 http://www.eecs.qmul.ac.uk/~ohearn/papers/concurrency.pdf

OʼHearn has some tutorial slides that accompany the paper
 http://www.eecs.qmul.ac.uk/~ohearn/papers/etapstalk.pdf

Francesco Zappa-Nardelli has some very nice slides on concurrency
verification:
 http://moscova.inria.fr/~zappa/teaching/mpri/2009/
Many of the slides in this section of the notes have been adapted from
this course.

Overview

Part 3: Concurrency

Concurrency Examples

Disjoint Concurrency

Concurrent Separation Logic

Owicki/Gries method

Rely-guarantee

Current/Future research

3

Examples of
concurrency

4

Concurrency

Concurrent:
“Running together in space, as parallel
lines; going on side by side, as
proceedings; occurring together, as events
or circumstances; existing or arising
together; conjoint”
 - Oxford English Dictionary

Motivation

• Concurrency is hard:

“If you can get away with it, avoid using
threads. Threads can be difficult to use, and
they make programs harder to debug.”

Java Sun Tutorial “Threads and Swing”

• Multi-core means concurrency everywhere!

Testing is hard

“Testing concurrent software is hard. Even simple
tests require invoking methods from multiple
threads and worrying about issues such as
timeouts and deadlock. Unlike in sequential
programs, many failures are rare, probabilistic
events and numerous factors can mask potential
errors.”

 JavaOne Technical session

Verification to the rescue?

Types of concurrency

• Disjoint concurrency

• Coarse-grain concurrency

• Fine-grained concurrency

• Non-blocking concurrency

Blocking stack
(Coarse Grain)

pop() {
 Node t,n; int v;
 lock(TOP)
 t = TOP;
 if (t == null)
 return -1;
 n = t.tl;
 TOP = n;
 unlock(TOP)
 v = t.value;
 delete(t);
 return v;
}

push (v) {
 Node t,n;
 b = new Node(v);
 lock(TOP)
 t = TOP;
 b.tl = t;
 TOP = b;
 unlock(TOP);
}

2 3 5 7 1

TOP

t n
v=2

Implementing Locks

CAS(l, t, n)
means
if (*l == t) {

*l = n; return true
}

lock (TOP) {
 while(!CAS(&TOP.lock, 0, 1))
 { }
}

unlock (TOP) {
 TOP.lock = 0;
}

Compare and Swap:

Problems with locks

• Pre-emption

• Bad in high contention

• Priority inversion

Try without locks.

Nonblocking stack
pop() {
 Node t,n; int v;
 while(true) {
 t = TOP;
 if (t == null) return -1;
 n = t.tl;
 if (CAS(&TOP,t,n)) {
 v = t.value;
 delete(t); return v;
 }
 }
}

push (v) {
 Node t,n;
 b = new Node(v);
 while(true) {
 t = TOP;
 b.tl = t;
 if (CAS(&TOP, t, b))
 break;
 }
}

2 3 5 7 1 1

TOP

t n

WHOOPS!

The “non-obvious” bug Non-blocking difficult

Several fixes to this algorithm

• Timestamps

• Garbage collector

• DCAS

• Hazard pointers

Disjoint Concurrency

15

Programming language

C ::= … | C || C | …

16

Now we extend the language with parallel composition. That is the
ability for two threads/processes to be interleaved.

C1 || C2 ,s,h → C1ʼ || C2ʼ,sʼ,hʻ
if either C1,s,h → C1ʼ,sʼ,hʼ and C2=C2ʼ
 or C2,s,h → C2ʼ,sʼ,hʼ and C1=C1ʼ

Parallel Rule

{ P1 } C1 { Q1 }
{ P2 } C2 { Q2 } .
{ P1 * P2 } C1 || C2 { Q1 * Q2 }

Provided variables used in C1 not modified by C2

and variables used in C2 not modified by C1

The variable side condition prevents races on the stack variables.

The * prevents races on the heap.

Example

{ x _ * y _ }
{ x _ } { y !_ }

[x] := 3 || [y] := 4
{ x 3 } { y !4 }

{ x 3 * y 4 }

The variable side condition is trivially satisfied as neither side modifies
any variables.

The * is used to ensure that neither thread modifies the same heap.

Parallel Dispose tree

{ tree(x) }disposetree(x) { emp } ⊦
 { tree(x) }
 if x != 0 then
 i := [x+1];
 j := [x];
 disposetree(i) || disposetree(j) || dispose x
 { empty }

19

Example

 { tree(x) ∧ x != 0}
 { ∃i,j. tree(i) * tree(j) * x i,j }
 i := [x+1];
 { ∃j. tree(i) * tree(j) * x i,j }
 j := [x];
 { tree(i) * tree(j) * x i,j }
 disposetree(i) || disposetree(j) || dispose x
 { empty }

Exercise: Prove that the rule
{ ∃x. P * E x } x := [E] { P * E x }
 provided E does not mention x.
is sound.

Example

{ tree(i) * tree(j) * x i,j }
{ tree(i) } { tree(j) } { x i,j }

disposetree(i) || disposetree(j) || dispose x .
{ empty } { empty } { empty }

 { empty * empty * empty }
{ empty }

Can we verify these?

{ empty }
x := cons(3);
z := cons(3);

[x]:=4 || [z]:=5;
{x⟼4 * z⟼5}

{ empty }
x := cons(3);

[x]:=4 || [x]:=5;
{x⟼_}

{ empty }
x:=4 || x:=5;

{ empty }

{ y = x+1 }
x:=4 || y:=y+1;

{ y = x+2 }

Merge sort

mergesort(x, n)
 if n >1 then
 local m in
 m := n/2;
 mergesort(x,m) || mergesort(x+m,n-m);
 merge(x,m,n-m)

Merge sort takes a pointer to an array an a length.
If the array has 1 or 0 elements then it is trivial to sort it. Otherwise, we
must recurse. We divide the size of the array into two, and sort the two
parts in parallel. Finally, we must merge the arrays.

Merge sort

{ array(x,n) }
 mergesort(x, n)
{ sorted_array(x,n) }

{ sorted_array(x,m) * sorted_array(x+m,n) }
 merge(x,m,n)
{ sorted_array(x,m+n) }

We can define array as
 array(x,n) ⇔ ⊛0≤i<n. x+i _

where
 ⊛0≤i<0.P(i) ⇔ empty
and
 ⊛0≤i<n+1.P(i) ⇔ (⊛0≤i<n.P(i)) * P(n)
That is,
 ⊛0≤i<n.P(i) ⇔ P(0) * … * P(n-1)
We define a
 data_array(x,n,f) ⇔ ⊛0≤i<n. x+i f(i)
Here f is used as a function to represent the data contained in the array.
We can then define a sorted array as
 sorted_array(x,n) ⇔ ∃f. data_array(x,n,f) ∧ sorted(f)
 sorted(f) ⇔ ∀i. f(i) ≤ f(i+1)

Exercise

Given the previous specifications verify the body of
mergesort.

The specification does not deal with the resulting array
being a permutation, how could you extend the
specification?

Concurrent
Separation Logic

26

Multiple access

How do we verify a program where several threads
want access to the same memory? e.g.

[x] := 43 || [x] := 47

Programming language

C ::= … | resource r in C | with r when B in C | …

28

We add two connectives to deal with communication
 resource r in C
Allocates a lock, r, that can be used inside the command C.
The second
 with r when B in C
acquires the lock for the execution of C provided the condition B holds
on entry, otherwise it blocks until that condition holds before acquiring
the lock. This is also called a critical region.

Resource Rule

Δ, r : I ⊦ { P } C { Q } .
Δ ⊦ { P * I } resource r in C { Q * I }

We use a context to specify the resource invariant associate to each
lock.
 Δ ::= r : P | Δ, Δ
We can treat this as a map from resource/lock name r, to its invariant P.
This rule can be read as removing some local state and making it
shared by the lock r.

Lock Rule

Δ ⊦ { (P * I) ∧ B} C { Q * I } .
Δ, r : I ⊦ { P } with r when B in C { Q }

In this rule, we acquire the lock r, and get the resourceʼs invariant, I,
added to our pre-condition. On exit from the lock, we must re-establish
the resourceʼs invariant, hence the “* I” in the post-condition.
This is similar to the while rule, where we must reestablish the loop
invariant after executing the body. Here it is a little different,
reestablishing the resource invariant it required, so the next thread to
acquire the lock will correctly be able to assume the resource invariant
holds.
Question: How do we know the resource invariant will not be modified
when the lock isnʼt acquired?

Caveat: side-conditions

There are subtle variable side-conditions used to allow
locks to refer to global variables.

Each variable is either associate to

• a single thread; or
• a single lock.

It can then only be modified and used in assertions by
the thread, or while the thread holds the associate
lock.

Alternatively, we could encode all variable access into the heap, but
this leads to complications in the presentation.

Another alternative is presented in
 Variables as resource for Hoare Logic
 Parkinson, Bornat, and Calcagno, LICS 2006
where a logic of variables is developed in a similar way to separation
logic deals with the heap.

Binary Semaphore

We can encode a semaphore as a critical region

 P(s) = with rs when s=1 do s := 0
 V(s) = with rs when s=0 do s := 1

Resource invariant

(s=0 ∧ empty) ∨ (s=1 ∧ Q)

Initially,

s=0

The variable s is associate with the critical region/lock rs.

Q is the state protected by the semaphore.

We can specify
 { emp } P(s) { Q }
and
 { Q } V(s) { emp }

Exercise: Prove the body meets these specifications.

Example

{ emp }
P(s)
[x] := 43
V(s)
{ emp }

{ emp }
P(s)
[x] := 47
V(s)
{ emp }

Let Q be x _ in the resource invariant of the semaphore.

Example

{ emp }
P(s)
{ x _ }
[x] := 43
{ x _ }
V(s)
{ emp }

. { emp * (Is ∧ s=1)} s := 0 { x _ * Is } .
{emp} with rs when s=1 do s:=0 { x _ }

. { x _ * (Is ∧ s=0)} s := 0 { emp * Is } .
{x _} with rs when s=0 do s:=1 { emp }

One place buffer

with buff when full do
 full := false
 y := c
dispose y

x := new
with buff when ¬full do
 full := true;
 c := x;

full := false

The variable full is associated with the lock, buff.

One place buffer

with buff when full do
 full := false
 y := c
dispose y

x := new
with buff when ¬full do
 full := true;
 c := x;

full := false
{ (full ∧ c _) ∨ (¬full ∧ empty) }

Resource
Invariant

One place buffer

with buff when full do
 { full ∧ c _ }
 full := false
 y := c
 { (¬full∧ empty)
 * y _ }
{ y _ }
dispose y

x := new
{ x _ }
with buff when ¬full do
 { (¬full∧ empty)
 * x _ }
 full := true;
 c := x;
 { full ∧ c _ }

{ (full ∧ c _) ∨ (¬full ∧ empty) }

Upon entry to the critical region, we get the resource invariant added to
our current precondition. When we leave the region we must
reestablish the resource invariant.

Ownership is in the eye of
the assertor

with buff when full do
 full := false
 y := c

x := new
with buff when ¬full do
 full := true;
 c := x;
dispose y

full := false

Can we verify the following?

Caveat: precise invariants

The resource invariant associate with a particular lock
must be precise.

A formula, P, is precise, iff, for any heap, there is at
most one subheap satisfying the formula
 ∀h1,h2,h. h1 ≤ h ∧ h2 ≤ h ∧ h1 ⊧ P ∧ h2 ⊧ P ⇒ h1 = h2

We can define an order on heaps as
 h1 ≤ h ⇔ ∃hʼ. h1 * h = hʼ

Rule of conjunction

{ P1 } C { Q1 }
{ P2 } C { Q2 }

{ P1 ∧ P2 } C { Q1 ∧ Q2 }

Subtle soundness

Without rule of conjunction logic is sounds with
arbitrary resource invariants.

With precise invariants and the rule of conjunction the
logic is sound.

Reynolds’ counter
example

We can prover the following holds with the resource
invariant: r: true.

{true} skip {true} .
{(emp ∨ x _) * true } skip { emp * true } .
{ emp ∨ x _ } with r when true do skip { emp }

Reynolds counter
example

From the previous proof we can derive both

{ emp * x _ } with… { x _ }

{ emp * x _ } with… { emp }

which with the rule of conjunction leads to a
contradiction.

What about racy
programs?

Do we want to forbid all races?

Does concurrent separation logic forbid all races?

Owicki/Gries method

45

For this lecture we will ignore the heap.

We will focus on how to remove the draconian restriction on variables
from the previous section. As we had the heap these restrictions didnʼt
seem so bad. But without the heap they are very restrictive.

This lecture is based very heavily on Francesco Zappa-Nardelliʼs
presentation.

Example

If we assume assignment is atomic, then is the following
true:

{ x = 0 }
x := x +1 || x := x + 2
{ x = 3 }

Parallel rule (attempt)

{ P1 } C1 { Q1 }
{ P2 } C2 { Q2 }

{ P1 ∧ P2 } C1 || C2 { Q1 ∧ Q2 }

This rule is unsound. Consider

{ y=1 } x := 0 { y=1 }
{ true } y := 2 { true }

both hold in Hoare logic, but
 { y=1 ∧ true } x :=0 || y := 2 { y=1 ∧ true }
certainly does not hold.

Parallel rule (attempt 2)

{ P1 } C1 { Q1 }
{ P2 } C2 { Q2 }

{ P1 ∧ P2 } C1 || C2 { Q1 ∧ Q2 }

Provided FV(P1,Q1) not modified by C1

and FV(P2,Q2) not modified by C2

This rule is unsound. Consider

{ y=1 } x := y ; z := x { z=1 }
{ true } x := 2 { true }

both hold in Hoare logic, but
 { y=1 ∧ true } (x := y ; y := x) || x := 2 { z=1 ∧ true }
certainly does not hold.

The issue is that the intermediate assertion in the proof
{ y=1 }
 x := y ;
{ x=1 } ← This is affected by the other thread.
 z := x
{ z=1 }

 The assignment interferes with the assertion.

Interference

Do the following commands affect the assertions

x:=x+1 y:=y+1 x:=x+2 x:=y

x>100

y=4

even(x)

x<30

x=y

even(x)∧even(y)

Interference

C does not interfere with P:

• mod(C) is disjoint from FV(P) ←too restrictive
• { P } C { P }

The second says the command does not affect the
validity of the assertion

Exercise: prove the questions on the previous slide with both
definitions.

Interference freedom

We define the critical formula of a proof outline Δ
proving {P}C{Q}, as Q and every pre-condition of a
command.

Given two proof trees Δ1 Δ2, they are interference free
if for every critical formula in one, R, and every triple in
the other {P}C{Q}, then the triple preserves the
formula, {P ∧ R} C { R }.

Example

 { x = 0 }
{ x = 0 ∨ x=2 } { x = 0 ∨ x = 1}
 x := x +1 || x := x + 2
{ x = 1 ∨ x = 3} { x = 2 ∨ x = 3}
 { x = 3 }

Interference freedom
requires

{(x=0 ∨ x=2)∧(x=0 ∨ x=1)} x := x +1 { x=0 ∨ x=1}

{(x=0 ∨ x=2)∧(x=2 ∨ x=3)} x := x +1 { x=2 ∨ x=3}

{(x=0 ∨ x=1)∧(x=0 ∨ x=2)} x := x +2 { x=0 ∨ x=2}

{(x=0 ∨ x=1)∧(x=1 ∨ x=3)} x := x +2 { x=1 ∨ x=3}

 { x = 0 }
{ x = 0 ∨ x=2 } { x = 0 ∨ x = 1}
 x := x +1 || x := x + 2
{ x = 1 ∨ x = 3} { x = 2 ∨ x = 3}
 { x = 3 }

Example: Bank

{ dep > 0 }
if credit > 1000 then flag := 1 else flag :=0
 ||
credit := credit + dep
{ flag = 1 ⇒ credit > 1000 }

Example: Bank
if credit > 1000 then
 {credit > 1000}
 {1=1 ⇒ credit>1000}
 flag := 1
 {flag=1 ⇒ credit>1000}
else
 {credit<1000}
 {1=0 ⇒ credit>1000}
 flag :=0
 {flag=1 ⇒ credit>1000}
{flag=1 ⇒ credit>1000}

{ dep > 0 }
credit := credit + dep
{ dep > 0 }

We have four unique critical assertions, and three commands that update the state.

Exercise: Prove each of the critical assertions is preserved by the commands.

Example: Bank

What goes wrong if we strengthen the specification?

{ dep > 0 }
if credit > 1000 then flag := 1 else flag :=0
 ||
credit := credit + dep
{ flag = 1 ⇔ credit > 1000 }

Exercise: Attempt this proof, and illustrate which of the conditions does
not hold.

Completeness

Can you prove the following:

{ x=0 }
 x:=x+1 || x := x+1
{ x=2 }

?

Attempt

x:=x+1 x:=x+1||
{ x=0 ∨ x=1 ∨ x=2 ∨ …} { x=0 ∨ x=1 ∨ x=2 ∨ …}

Auxiliary Variables

Sometimes we need to instrument program to account
for interference more precisely

{ x=0 ∧ b1=0 ∧ b2 = 0}
 <x:=x+1; b1:=1> || <x := x+1; b2:=1>
{ x=2 }

Angle brackets mean the program executes all the operation in one indivisible unit of time. That is,
intermediate states are not observable. It is atomic.

Attempt II

<x:=x+1; b1:=1> <x:=x+1; b2:=1>||
{ x=b2 ∧ b1=0 } { x=b1 ∧ b2=0 }

{ x=b2+1 ∧ b1=1} { x=b1+1 ∧ b2=1}
{ x=b2+1=b1+1 ∧ b1=1 ∧ b2 =1 }

{ x=2 }

{ x=b1=b2=0 }

Auxiliary Variables

A set of variables, A, is consider auxiliary, if

• the only expressions they appear in, are on the
right of an assignment where the target of the
assignment is in the set of auxiliary.

We define erase(C,A) as replacing all assignment to an
auxiliary by skip.

That is they cannot appear in the guards of loops or if-then-else
commands, and their value cannot be assigned to a normal variables.

Alternatively, it can be seen as erase(C,A) no longer mentions A.

Auxiliary variable
elimination

{ P } C { Q }.

{ P } C’ { Q }

where C’ = erase(C,A)

and A not in FV(P,Q)

This rule allows us to introduce auxiliary variables in the justification of
a program. As we did for the double increment program.

Conclusions

If we have n commands in a thread, and m critical
assertions, and t threads how many interference checks
would we have to perform?

Is there a more scalable/compositional way?

Rely-guarantee method

64

A good introduction to rely-guarantee can be found in Vafeiadisʼs award
winning dissertation:

 Modular fine-grained concurrency verification
 http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-726.html

Interference

In Owicki/Gries method each pre-condition needed
checking against each command in another thread.

Can we abstract the interference?

Rely-guarantee

Judgements are extended with a concurrent context

R, G ⊦ { P } C { Q }

• the rely, R, is an abstraction of what the other
threads can do; and

• the guarantee, R, is an abstraction of what this
thread does.

Both the rely and guarantee are relations.

Example

We specify relations by describing the current and the
previous state: for example,

old(x=0) ∧ x=1

∀X. old(x=X) ∧ x=X+1

(old(x=0)∧x=1) ∨ (old(x=2) ∧ x=3)

Stability

We define an assertion as stable with respect to a
relation as

P stable under R
 ⇔ σ ⊧ P ∧ (σ,σ’) ⊧ R ⇒ σ’ ⊧ P

Stability

Do the following relations preserve the assertions

x=old(x)+1 x=old(x)+2
id(x) ∧

y=old(y)+1
id(x) ∧

y=old(y)+2

x>100

y=4

even(x)

x<30

x=y

even(x)∧even(y)

Parallel Rule

G1 ⊆ R2
G2 ⊆ R1
R1, G1 ⊦ { P1 } C1 { Q1 }
R2, G2 ⊦ { P2 } C2 { Q2 } .
R1 ⋂ R2, G1 ⋃ G2 ⊦ { P1 ∧ P2 } C1 || C2 {Q1 ∧ Q2 }

Parallel Rule

G1 ⇒ R2
G2 ⇒ R1
R1, G1 ⊦ { P1 } C1 { Q1 }
R2, G2 ⊦ { P2 } C2 { Q2 } .
R1 ∧ R2, G1 ∨ G2 ⊦ { P1 ∧ P2 } C1 || C2 {Q1 ∧ Q2 }

If we consider a logic over relations, we can view it with the logical connectives.

Assignment

P stable under R
Q stable under R
P ∧ x=old(E) ⇒ G
P⇒Q [x:=E] .
R, G ⊦ { P } x := E { Q }

Skip

P stable under R .
R, G ⊦ { P } skip { P }

Surprisingly, we have to modify this rule slightly to maintain soundness
of the system.

Example

Let us return to our simple example:

x := x + 1 || x := x + 2

We can verify this using the following relations

R1= (old(x)=0 ∧ x=2) ∨ (old(x)=1 ∧ x=3) = G2

R2= (old(x)=0 ∧ x=1) ∨ (old(x)=2 ∧ x=3) = G1

First Thread

To show

R1,G1 ⊦ { x=0 ∨ x=2 } x := x + 1 { x=1 ∨ x=3 }

We need to prove

• x=0 ∨ x=2 stable under R1; and

• x=1 ∨ x=3 stable under R1; and

• old(x=0 ∨ x=2) ∧ x=old(x+1) ⇒ G1; and

• (x=0 ∨ x=2) [x:=x+1] ⇒ (x=1 ∨ x=3)

Exercise: Prove the second thread meets the specification.

Comparison

How does this compare to Owicki/Gries?

Current/Future
Research

77

